Prime Number Theorem

Theorem (bound for x>55x > 55)

Let π(x)\pi(x) denote the number of primes less than some integer xx. For x>55x>55, xlogxπ(x)xlogx4\frac{x}{\log x} \leq \pi(x)\leq \frac{x}{\log x - 4}


References:

  1. https://www.chrismusco.com/amlds2023/notes/lecture03.html
  2. https://mathworld.wolfram.com/PrimeNumberTheorem.html
  3. https://en.wikipedia.org/wiki/Prime_number_theorem